Abstract
We consider a linear elliptic system in divergence form with random coefficients and study the random fluctuations of large-scale averages of the field and the flux of the solution operator. In the context of the random conductance model, we developed in a previous work a theory of fluctuations based on the notion of homogenization commutator: we proved that the two-scale expansion of this special quantity is accurate at leading order in the fluctuation scaling when averaged on large scales (as opposed to the two-scale expansion of the solution operator taken separately) and that the large-scale fluctuations of the field and the flux of the solution operator can be recovered from those of the commutator. This implies that the large-scale fluctuations of the commutator of the corrector drive all other large-scale fluctuations to leading order, which we refer to as the pathwise structure of fluctuations in stochastic homogenization. In the present contribution we extend this result in two directions: we treat continuum elliptic (possibly non-symmetric) systems and allow for strongly correlated coefficient fields (Gaussian-like with a covariance function that can display an arbitrarily slow algebraic decay at infinity). Our main result shows in this general setting that the two-scale expansion of the homogenization commutator is still accurate to leading order when averaged on large scales, which illustrates the robustness of the pathwise structure of fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.