Abstract

Developmental patterning relies on morphogen concentration gradients, which generally provide invariable positional information despite genetic fluctuations. Theoretical studies have predicted robust patterning; however, little experimental evidence exists to support this idea. In this report, we examine the robustness of the Decapentaplegic (Dpp) (a Drosophila homologue of bone morphogenetic protein [BMP]) activity gradient in the presence of fluctuations in Dpp receptor levels. Dpp activity can be measured by the degree of phosphorylation of Mothers against dpp (Mad), a major signal transducer. We determined that phosphorylated Mad (pMad) levels remain constant when an extra copy of thickveins (tkv), which encodes the receptor, is introduced into the wild-type background. Higher Tkv levels, expressed under the control of an artificial promoter, result in constant pMad levels. This prompted us to study the mechanisms that underlie pMad level maintenance even when Tkv levels are increased. We focused on the inhibitory Smad, daughters against dpp (dad), which is induced by Dpp signaling and negatively regulates Dpp activity. In the absence of dad, pMad levels significantly increase when Tkv levels increase. These results suggest that Dpp activity gradient robustness when Tkv levels increase depends, at least in part, on negative feedback regulation by dad.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.