Abstract

In multicellular organisms, the timing and placement of gene expression in a developing tissue assigns the fate of each cell in the embryo in order for a uniform field of cells to differentiate into a reproducible pattern of organs and tissues. This positional information is often achieved through the action of spatial gradients of morphogens. Spatial patterns of gene expression are paradoxically robust to variations in morphogen dosage, given that, by definition, gene expression must be sensitive to morphogen concentration. In this work we investigate the robustness of the Dorsal/NF-κB signaling module with respect to perturbations to the dosage of maternally-expressed dorsal mRNA. The Dorsal morphogen gradient patterns the dorsal-ventral axis of the early Drosophila embryo, and we found that an empirical description of the Dorsal gradient is highly sensitive to maternal dorsal dosage. In contrast, we found experimentally that gene expression patterns are highly robust. Although the components of this signaling module have been characterized in detail, how their function is integrated to produce robust gene expression patterns to variations in the dorsal maternal dosage is still unclear. Therefore, we analyzed a mechanistic model of the Dorsal signaling module and found that Cactus, a cytoplasmic inhibitor for Dorsal, must be present in the nucleus for the system to be robust. Furthermore, active Toll, the receptor that dissociates Cactus from Dorsal, must be saturated. Finally, the vast majority of robust descriptions of the system require facilitated diffusion of Dorsal by Cactus. Each of these three recently-discovered mechanisms of the Dorsal module are critical for robustness. These mechanisms synergistically contribute to changing the amplitude and shape of the active Dorsal gradient, which is required for robust gene expression. Our work highlights the need for quantitative understanding of biophysical mechanisms of morphogen gradients in order to understand emergent phenotypes, such as robustness.

Highlights

  • The morphogen concept forms the basis of many models of developing tissues

  • The Dorsal morphogen gradient patterns the dorsal-ventral axis of the early Drosophila embryo, and we found that an empirical description of the Dorsal gradient is highly sensitive to maternal dorsal dosage

  • This positional information is interpreted by nuclei that begin to differentiate by expressing different genes

Read more

Summary

Introduction

The morphogen concept forms the basis of many models of developing tissues Through their concentration gradients in space, morphogens send positional information to cells and direct them to develop in specific ways depending on their location within a tissue. The roles of these signals range from the development of the initial polarities of embryos to specification of cell identity in specific tissues, and the nervous system in both vertebrates and Drosophila [1]. Tissue patterning is often initiated by the cells’ concentration-dependent response to the morphogen gradient: cells throughout the tissue are subject to different concentrations of morphogen, depending on their position within the field, and express distinct target genes. Perturbations to the morphogen dosage or production rate, which should change the morphogen distribution, should in turn perturb gene expression patterns

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.