Abstract
In this paper, we consider the robust interpretation of metric temporal logic (MTL) formulas over timed sequences of states. For systems whose states are equipped with nontrivial metrics, such as continuous, hybrid, or general metric transition systems, robustness is not only natural, but also a critical measure of system performance. In this paper, we define robust, multi-valued semantics for MTL formulas, which capture not only the usual Boolean satisfiability of the formula, but also topological information regarding the distance, e, from unsatisfiability. We prove that any other timed trace which remains e-close to the initial one also satisfies the same MTL specification with the usual Boolean semantics. We derive a computational procedure for determining an under-approximation to the robustness degree e of the specification with respect to a given finite timed state sequence. Our approach can be used for robust system simulation and testing, as well as form the basis for simulation-based verification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.