Abstract
It has been recently proposed that natural connectivity can be used to efficiently characterise the robustness of complex networks. The natural connectivity quantifies the redundancy of alternative routes in the network by evaluating the weighted number of closed walks of all lengths and can be seen as an average eigenvalue obtained from the graph spectrum. In this article, we explore both analytically and numerically the natural connectivity of regular ring lattices and regular random graphs obtained through degree-preserving random rewirings from regular ring lattices. We reformulate the natural connectivity of regular ring lattices in terms of generalised Bessel functions and show that the natural connectivity of regular ring lattices is independent of network size and increases with K monotonically. We also show that random regular graphs have lower natural connectivity, and are thus less robust, than regular ring lattices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.