Abstract
Background: Estimates of Under-Five mortality (U5M) have taken advantage of indirect methods but U5M risk factors have been identified using fixed statistical models with little considerations for the potentials of mixture models. Mixture models such as Poisson-Mixture models exhibit flexibility tendency, which is an attribute of robustness lacking in fixed models. Objective: To examine the robustness of Poisson-Mixture models in identifying reliable determinants of U5M. Methods: The data on 18,855 women used in this study were obtained from the 2008 Nigeria Demographic and Health Survey (NDHS). Six different Poisson-Mixture models namely: Poisson (PO), Zero-Inflated Poisson (ZIP), Poisson Hurdle (PH), Negative Binomial (NBI), Zero-Inflated Negative Binomial (ZINBI) and Negative Binomial Hurdle (NBIH) were fitted separately to the data. The Akaike Information Criteria (AIC) and diagnostic check for normality were used to select robust models. All tests were conducted at p = 0.05. Results: The models and AIC values for U5M were: 38763.47 (PO), 38654.55 (ZIP), 44270.77 (PH), 38526.26 (NBI), 38513.71 (ZINBI) and 44269.30 (NBIH). The PO, ZIP, PH and NBIH met normality test criteria, and the ZIP model was of best fit. The model identified breastfeeding, paternal education, toilet type, maternal education, place of delivery, birth-order and antenatal-visits as significant determinants of U5M at the national level. Conclusion: The Zero-Inflated Poisson model provided the best robust estimates of Under-five Mortality in Nigeria, while maternal education and birth-order were identified as the most important determinants. The Poisson-mixture models are recommended for modelling Under-five Mortality in Nigeria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.