Abstract
Minimum evolution is the guiding principle of an important class of distance-based phylogeny reconstruction methods, including neighbor-joining (NJ), which is the most cited tree inference algorithm to date. The minimum evolution principle involves searching for the tree with minimum length, where the length is estimated using various least-squares criteria. Since evolutionary distances cannot be known precisely but only estimated, it is important to investigate the robustness of phylogenetic reconstruction to imprecise estimates for these distances. The safety radius is a measure of this robustness: it consists of the maximum relative deviation that the input distances can have from the correct distances, without compromising the reconstruction of the correct tree structure. Answering some open questions, we here derive the safety radius of two popular minimum evolution criteria: balanced minimum evolution (BME) and minimum evolution based on ordinary least squares (OLS + ME). Whereas BME has a radius of 1/2, which is the best achievable, OLS + ME has a radius tending to 0 as the number of taxa increases. This difference may explain the gap in reconstruction accuracy observed in practice between OLS + ME and BME (which forms the basis of popular programs such as NJ and FastME).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.