Abstract

The supercell method is used to study the variation of the photonic bandgaps in one-dimensional photonic crystals under random perturbations to thicknesses of the layers. The results of both plane wave and analytical band structure and density of states calculations are presented along with the transmission cofficient as the level of randomness and the supercell size is increased. It is found that higher bandgaps disappear first as the randomness is gradually increased. The lowest bandgap is found to persist up to a randomness level of 55 percent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call