Abstract

The structure of the covariance matrix of sample covariances under the class of linear latent variate models is derived using properties of cumulants. This is employed to provide a general framework for robustness of statistical inference in the analysis of covariance structures arising from linear latent variate models. Conditions for normal theory estimators and test statistics to retain each of their usual asymptotic properties under non‐normality of latent variates are given. Factor analysis, LISREL and other models are discussed as examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.