Abstract

Monolayer transition-metal dichalcogenide (TMD) semiconductors exhibit strong excitonic effects and hold promise for optical and optoelectronic applications. Yet, electron doping of TMDs leads to the conversion of neutral excitons into negative trions, which recombine predominantly non-radiatively at room temperature. As a result, the photoluminescence (PL) intensity is quenched. Here we study the optical and electronic properties of a MoS2/WSe2 heterostructure as a function of chemical doping by Cs atoms performed under ultra-high vacuum conditions. By PL measurements we identify two interlayer excitons and assign them to the momentum-indirect Q-Gamma and K-Gamma transitions. The energies of these excitons are in a very good agreement with ab initio calculations. We find that the Q-Gamma interlayer exciton is robust to the electron doping and is present at room temperature even at a high charge carrier concentration. Submicrometer angle-resolved photoemission spectroscopy (micro-ARPES) reveals charge transfer from deposited Cs adatoms to both the upper MoS2 and the lower WSe2 monolayer without changing the band alignment. This leads to a small (10 meV) energy shift of interlayer excitons. Robustness of the momentum-indirect interlayer exciton to charge doping opens up an opportunity of using TMD heterostructures in light-emitting devices that can work at room temperature at high densities of charge carriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call