Abstract

A supply chain system can be considered as an interdependent supply chain network (ISCN) which consists of an undirected cyber-network and a directed physical-network. To survive against disruptions, an ISCN needs to maintain operations and connectedness, referred to as robustness. Studies on the robustness of ISCNs when considering both functional and structural cascading failures are still scarce. In this paper, we first propose a cascading failure model which considers these two cascading failures simultaneously. We also present a model to generate ISCNs with different network types and interconnecting patterns. Using the transition threshold based on the proposed all-type connected sub-network, we can evaluate the robustness of ISCNs more properly. We then conduct numerical simulations to investigate how some parameters (e.g., network type, interconnecting pattern, the distribution of different types of nodes, etc.) affect the robustness of ISCNs under random and targeted disruptions. The results mainly show that the robustness of ISCNs can be affected seriously by different network types, interconnecting patterns, and disruption types; and the distribution of different types of nodes is more uniform, the corresponding ISCN is more robust, no matter what the disruption type is. Our results may provide help for building robust ISCNs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call