Abstract
We first present some sufficient conditions for the construction of a robust family of exponential attractors for infinite dimensional dynamical systems with small time delay perturbation. In particular, we prove that this family of exponential attractors is stable in the sense of the symmetric Hausdorff distance as the delay effects vanish. The abstract result is then applied to two-dimensional nonlocal diffusion lattice systems with small delay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.