Abstract

Discrete-variable (DV) and continuous-variable (CV) schemes constitute the two major families of quantum key distribution (QKD) protocols. Unfortunately, since the setup elements required by these schemes are quite different, making a fair comparison of their potential performance in particular applications is often troublesome, limiting the experimenters’ capability to choose an optimal solution. In this work we perform a general comparison of the major entanglement-based DV and CV QKD protocols in terms of their resistance to the channel noise, with the otherwise perfect setup, showing the definite superiority of the DV family. We analytically derive fundamental bounds on the tolerable channel noise and attenuation for entanglement-based CV QKD protocols. We also investigate the influence of DV QKD setup imperfections on the obtained results in order to determine benchmarks for the parameters of realistic photon sources and detectors, allowing the realistic DV protocols to outperform even the ideal CV QKD analogs. Our results indicate the realistic advantage of DV entanglement-based schemes over their CV counterparts and suggests the practical efforts for maximizing this advantage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.