Abstract

Robustness issues with steady-state initialization remain a barrier in the practical use of declarative modeling languages for multi-domain modeling of large, complex, and heterogeneous technical systems. The objective of this paper is to illustrate how probability-one homotopy, an established method from topology, can solve this issue. This is achieved by establishing a framework for application-specific probability-one homotopy in declarative modeling languages. The analysis is based on domain-specific probability-one homotopy maps, which were reformulated in a declarative fashion. Additionally, a novel probability-one homotopy map and associated coercivity proof is introduced for a class of thermo-fluid dynamics problems. It was found that the approach enables robust initialization for declarative modeling languages on several test cases and leads to a concise declarative problem formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.