Abstract

Sparse arrays can identify O(N <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) uncorrelated sources using N physical sensors. This property is because the difference coarray, defined as the differences between sensor locations, has uniform linear array (ULA) segments of length O(N <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ). It is empirically known that, for sparse arrays like minimum redundancy arrays, nested arrays, and coprime arrays, this O(N <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) segment is susceptible to sensor failure, which is an important issue in practical systems. This paper presents the (k-)essentialness property, which characterizes the combinations of the failing sensors that shrink the difference coarray. Based on this, the notion of fragility is proposed to quantify the reliability of sparse arrays with faulty sensors, along with comprehensive studies of their properties. It is demonstrated through examples that there do exist sparse arrays that are as robust as ULA and at the same time, they enjoy O(N <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) consecutive elements in the difference coarray.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.