Abstract

After a very brief introduction to a mechanistic and statistical theory of molecular fluctuations in chemical reactions developed by Joel Keizer, we explore the robustness of a circadian rhythm model by using the theory and the exact stochastic simulation (ESS). The comparative study shows that the theory reflects the effects of the dynamics of the model on the robustness more than ESS does. Even though the theory is a macroscopic one, the robustness of the model compares well with that computed from the ESS when the system size is larger than 50. The robustness increases nonlinearly with the system size and it reaches an asymptotic value at higher system sizes. As we can expect from the dynamics of the system, the robustness is minimum near the bifurcation point and as the most sensitive parameter increases away from the bifurcation point the robustness according to the theory as well as the ESS increases and then reaches to a steady value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.