Abstract

Template parameters of cellular neural networks (CNNs) should be robust enough to random variability of VLSI tolerances and noise. Using the CNN for image processing, one of the main problems is the robustness of a given task in a real VLSI chip. It will be shown that very different tasks such as 2D or 3D deconvolution and texture segmentation can be solved in a real VLSI CNN environment without significant loss of efficiency and accuracy under low precision (about 6–8 bits) and random variability of the VLSI parameters. The CNN turns out to be very robust against template noise, image noise, imperfect estimation of templates and parameter accuracy. The parameters of a template are tuned using genetic learning. These optimized parameters depend on the precision of the architecture. It was found that about 6–8 bits of precision is enough for a complicated multilayer deconvolution, while only 4 bits of precision is enough for difficult texture segmentation in the presence of noise and parameter variances. The tolerance sensitivity of template parameters is considered for VLSI implementation. Theory and examples are demonstrated by many results using real-life microscopic images and natural textures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.