Abstract

For m-input, m-output, finite-dimensional, linear systems satisfying the classical assumptions of adaptive control (i.e., (i) minimum phase, (ii) relative degree one and (iii) positive definite high-frequency gain matrix), two control strategies are considered: the well-known λ-tracking and funnel control. An application of the λ-tracker to systems satisfying (i)–(iii) yields that all states of the closed-loop system are bounded and |e| is ultimately bounded by some prespecified λ ≫ 0. An application of the funnel controller achieves tracking of the error e within a prescribed performance funnel if applied to linear systems satisfying (i)–(iii). Moreover, all states of the closed-loop system are bounded. The funnel boundary can be chosen from a large set of functions. Invoking the conceptual framework of the nonlinear gap metric, we show that the λ-tracker and the funnel controller are robust. In the present setup this means in particular that λ-tracking and funnel control copes with bounded input and output disturbances and, more importantly, may be applied to any system which is “close” (in terms of a “small” gap) to a system satisfying (i)–(iii), and which may not satisfy any of the classical conditions (i)–(iii), as long as the initial conditions and the disturbances are “small”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call