Abstract

A predictor-based controller for time-varying delay systems is presented in this paper and its robustness properties for different uncertainties are analyzed. First, a time-varying delay dependent stability condition is expressed in terms of LMIs. Then, uncertainties in the knowledge of all plant-model parameters are considered and the resulting closed-loop system is shown to be robust with respect to these uncertainties. A significant improvement with respect to the same control strategy without predictor is achieved. The scheme is applicable to open-loop unstable plants and it has been tested in a real-time application to control the roll angle of a quad-rotor helicopter prototype. The experimental results show good performance and robustness of the proposed scheme even in the presence of long delay uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.