Abstract
Abstract Research in the field of artificial intelligence (AI) in medicine is increasingly relying on algorithms based on deep learning (DL), especially for radiology. Despite producing promising results, DL models have a major drawback: their reliance on large training datasets. Especially in medicine, large, annotated datasets are hard to obtain, leading to low robustness and a performance loss when exposed to unseen, new data. To address this problem, our research evaluates how well data augmentation is able to expand the used dataset and thus improve a DL model. We employ 17 different augmentation methods to test the robustness of a DenseNet-121 trained to classify Acute Respiratory Distress Syndrome (ARDS) in chest X-rays. Our experiments show that while the model has low robustness for augmented test data when trained on unaugmented data, the general performance for ARDS classification can be improved by augmenting the training data. Overall, this demonstrates that data augmentation is beneficial in training AI models for ARDS classification in order to create more robust and generalizable models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.