Abstract

In many engineering applications, linear models are preferred, even if it is known that the system is disturbed by nonlinear distortions. A large class of nonlinear systems, which are excited with a ldquoGaussianrdquo random excitation, can be represented as a linear system G BLA plus a nonlinear noise source Y S . The nonlinear noise source represents that part of the output that is not captured by the linear approximation. In this paper, it is shown that the best linear approximation G BLA and the power spectrum S Y S of the nonlinear noise source Y S are invariants for a wide class of excitations with a user-specified power spectrum. This shows that the alternative ldquolinear representationrdquo of a nonlinear system is robust, making its use in the daily engineering practice very attractive. This result also opens perspectives to a new generation of dynamic system analyzers that also provide information on the nonlinear behavior of the tested system without increasing the measurement time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.