Abstract

In network analysis, a community can be defined as a group of nodes of a network (or clusters) that are densely interconnected with each other but only sparsely connected with the rest of the network. Several algorithms have been used to obtain a convenient partition allowing extracting the communities in a given network, based on their topology and, possibly, the weights of links. These weights usually represent specific characteristics for example: distance, reactance, reliability. Even if the optimum partitions could be derived, there are uncertainties associated to the network parameters that affect the network partition. In this paper, the authors extend a previous approach for assessing the effects of weight uncertainties on community structures and propose a global approach for (a) understanding the global similarity among the partitions; (b) analyzing the robustness of the communities derived without uncertainty; and (c) quantifying the robustness of the inter-community links. To this aim an uncertainty propagation analysis, based on the Monte Carlo technique is proposed. The approach is illustrated through analyzing the topology of an electric power system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.