Abstract
Model reduction methods usually focus on the error performance analysis; however, in presence of uncertainties, it is important to analyze the robustness properties of the error in model reduction as well. In this paper, we give robustness guarantees for structured model reduction of linear and nonlinear dynamical systems under parametric uncertainties. In particular, we consider a model reduction where the states in the reduced model are a strict subset of the states of the full model, and the dynamics for all other states are collapsed to zero (similar to quasi-steady state approximation). We show two approaches to compute a robustness metric for any such model reduction — a direct linear analysis method for linear dynamics and a sensitivity analysis based approach that also works for nonlinear dynamics. We also prove that for linear systems, both methods give equivalent results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.