Abstract

In real-world engineering design problems we have to search for solutions that simultaneously optimize a wide range of different criteria. Furthermore, the optimal solutions also have to be robust. Therefore, this paper presents a method where a multi-objective genetic algorithm is combined with response surface methods in order to assess the robustness of the identified optimal solutions. The design example is two different concepts of hydraulic actuation systems, which have been modelled in a simulation environment to which an optimization algorithm has been coupled. The outcome from the optimization is a set of Pareto optimal solutions that elucidate the trade-off between energy consumption and control error for each system. Based on these Pareto fronts, promising regions could be identified for each concept. In these regions, sensitivity analyses are performed and thus it can be determined how different design parameters affect the system at different optimal solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.