Abstract

In this paper, a star tracker attitude estimation procedure with increased robustness and efficiency, using the AIM algorithm, is presented and validated. The unique approach of the AIM algorithm allows one to introduce a reliable quality check that can be efficiently calculated. Unlike existing validation methods, this quality check not only detects that some of the data are unreliable but it also determines which star measurements are unreliable. These unreliable measurements can be removed from the data set, and a new attitude quaternion can be calculated without having to repeat the entire AIM algorithm. This greatly improves the robustness of the attitude estimation, while limiting the computational expense. Furthermore, the structure of AIM allows one to reuse previously calculated data when the change in attitude between subsequent measurements is small. This way, the efficiency of the entire attitude estimation cycle can be increased significantly. These enhancements are validated with simulated star tracker data. The results show that the improvements significantly improve the robustness and lower the computational cost of the star tracker attitude estimation. As a consequence, the overall performance of the attitude determination and control system greatly increases. The increased efficiency of the attitude estimation could also allow the use of star trackers in smaller satellite projects with smaller budgets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.