Abstract

The robustness of complex networks under attacks largely depends on the structure of a network and the nature of the attacks. Previous research on interdependent networks has focused on two types of initial attack: random attack and degree-based targeted attack. In this paper, a deliberate attack function is proposed, where six kinds of deliberate attacking strategies can be derived by adjusting the tunable parameters. Moreover, the robustness of four types of interdependent networks (BA–BA, ER–ER, BA–ER and ER–BA) with different coupling modes (random, positive and negative correlation) is evaluated under different attacking strategies. Interesting conclusions could be obtained. It can be found that the positive coupling mode can make the vulnerability of the interdependent network to be absolutely dependent on the most vulnerable sub-network under deliberate attacks, whereas random and negative coupling modes make the vulnerability of interdependent network to be mainly dependent on the being attacked sub-network. The robustness of interdependent network will be enhanced with the degree–degree correlation coefficient varying from positive to negative. Therefore, The negative coupling mode is relatively more optimal than others, which can substantially improve the robustness of the ER–ER network and ER–BA network. In terms of the attacking strategies on interdependent networks, the degree information of node is more valuable than the betweenness. In addition, we found a more efficient attacking strategy for each coupled interdependent network and proposed the corresponding protection strategy for suppressing cascading failure. Our results can be very useful for safety design and protection of interdependent networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.