Abstract
Robustness is a key property for critical systems that run in uncertain environments, to ensure that small input perturbations can cause only small output changes. Current critical systems often involve lots of floating-point computations which are inexact. Robustness analysis of floating-point programs needs to consider both the uncertain inputs and the inexact computation. In this paper, we propose to leverage the idea of self-composition to transform the robustness analysis problem into a reachability problem, which enables the use of standard reachability analysis techniques such as software model checking and symbolic execution for robustness analysis. To handle floating-point arithmetic, we employ an abstraction that encompasses the effect of rounding and that can encompass all rounding modes. It converts floating-point expressions into linear expressions with interval coefficients in exact real arithmetic. On this basis, we employ interval linear programming to compute the maximum output change or maximum allowed input perturbation for the abstracted programs. Preliminary experimental results of our prototype implementation are encouraging.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.