Abstract
We study robust revenue maximization by the designer of a single-object auction who has Bayesian beliefs about bidders' independent private values but is ignorant about post-auction resale opportunities (including possible leakage of private information). We show the optimality of a Vickrey auction with bidder-specific reserve prices proposed by Ausubel and Cramton (2004), which allocates the object efficiently provided that at least one of the bidders has bid above his reserve price. In this auction, truthful bidding and no resale is an ex post equilibrium for any individually rational resale procedure. We show optimality of this auction for a worst-case resale procedure in which the highest-value bidder learns all other bidders' values and has full bargaining power. The proof involves construction of Lagrange multipliers on the incentive constraints representing non-local deviations in which a bidder underbids to lose and then purchases from the auction's winner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.