Abstract

This paper presents a robustly stable finite-horizon model predictive control (MPC) scheme for linear uncertain systems, in which the uncertainty is not restricted to some specific uncertainty class (polytopic, affine, LFT, etc.). The only requirement is that the state-space matrices remain bounded over the uncertainty set. Suitable constraints are added to the MPC cost function to impose robust asymptotic stability and to deal with input/output constraints. The resulting optimization problem is solved at each time instant in a probabilistic framework using an iterative randomized ellipsoid algorithm (REA). The method is compared in simulation to the existing approach of Kothare, Balakrishnan and Morari [(1996). Robust constrained model predictive control using linear matrix inequalities. Automatica, 32(10), 1361–1379].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.