Abstract

This paper formulates an enhanced Model-Reference-Adaptive-Controller (MRAC) that is augmented with a fuzzy-immune adaptive regulator to strengthen the disturbance-attenuation capability of closed-loop under-actuated systems. The proposed scheme employs the conventional state-space MRAC and augments it with a pre-configured fuzzy-immune mechanism that acts as a superior regulator to dynamically modulate the adaptation gains of the Lyapunov gain-adjustment law. The immunological computations increase the controller's adaptability to flexibly manipulate the damping control effort under exogenous disturbances. The efficacy of the proposed Immune-MRAC law is comparatively analyzed under practical disturbance conditions by conducting real-time hardware experiments on the QNET rotary pendulum. The experimental outcomes validate the faster transient-recovery behavior and stronger damping effort of the proposed control law against the exogenous disturbances while preserving the system's asymptotic stability and control energy efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.