Abstract

The complex manner in which organisms respond to changes in their gene dosage has long fascinated geneticists. Oddly, although the existence of dominance implies that dosage reductions often have mild phenotypes, extra copies of whole chromosomes (aneuploidy) are generally strongly deleterious. Even more paradoxically, an extra copy of the genome is better tolerated than is aneuploidy. We review the resolution of this paradox, highlighting the roles of biochemistry, protein aggregation, and disruption of cellular microstructure in that explanation. Returning to life's curious combination of robustness and sensitivity to dosage changes, we argue that understanding how biological robustness evolved makes these observations less inexplicable. We propose that noise in gene expression and evolutionary strategies for its suppression play a role in generating dosage phenotypes. Finally, we outline an unappreciated mechanism for the preservation of duplicate genes, namely preservation to limit expression noise, arguing that it is particularly relevant in polyploid organisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.