Abstract

The recycling use of wood sawdust to process composite boards has received much attention in recent years. To avoid the use of chemical adhesives, natural cellulose-based materials were often used as adhesives to combine wood sawdust. Rather than utilizing nanocellulose, the report herein describes a method to prepare a robust composite board that is based on microfibrous cellulose, which is a low-cost commercial product. To effectively cross-link wood sawdust and microfibrous cellulose, phosphoric acid-activated glutaraldehyde was used as catalyst. Compared to its uncross-linked counterpart, the modulus of elasticity and modulus of rupture of the composite board that had been cross-linked by glutaraldehyde and phosphoric acid were significantly strengthened to 3.45±0.06 GPa and 36.5±3.5 MPa, respectively. Moreover, the moisture resistance of the cross-linked composite board was also enhanced. After soaking in water for 24 h, the mass swelling ratio and thickness swelling ratio of cross-linked composite board had only changed 49% and 21%, respectively. These performances even exceeded that of composite board prepared from nanocellulose. The method described in this work may have applications in commercial processing and the recycling of wood sawdust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.