Abstract

This paper presents robust weighted variants of batch and online standard Gaussian processes (GPs) to effectively reduce the negative impact of outliers in the corresponding GP models. This is done by introducing robust data weighers that rely on robust and quasi-robust weight functions that come from robust M-estimators. Our robust GPs are compared to various GP models on four datasets. It is shown that our batch and online robust weighted GPs are indeed robust to outliers, significantly outperforming the corresponding standard GPs and the recently proposed heteroscedastic GP method GPz. Our experiments also show that our methods are comparable to and sometimes better than a state-of-the-art robust GP that uses a Student-t likelihood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.