Abstract

Digital media sharing and access in today’s world of the internet is very frequent for every user. The management of digital rights may come into threat easily as the accessibility of data through the internet become wide. Sharing digital information under security procedures can be easily compromised due to the various vulnerabilities floating over the internet. Existing research has been tied to protecting internet channels to ensure the safety of digital data. Researchers have investigated various encryption techniques to prevent digital rights management but certain challenges including external potential attacks cannot be avoided that may give unauthorized access to digital media. The proposed model endorsed the concept of watermarking in digital data to uplift media security and ensure digital rights management. The system provides an efficient procedure to conduct over-watermarking in digital audio signals and confirm the avoidance of ownership of the host data. The proposed technique uses a watermark picture as a signature that has been initially encrypted with Arnold's cat map and cyclic encoding before being embedded. The upper triangular R-matrix component of the energy band was then created by using the Fast Fourier transform and Cordic QR procedures to the host audio stream. Using PN random sequences, the encrypted watermarking image has been embedded in the host audio component of the R-matrix. The same procedure has been applied to extract the watermark image from the watermarked audio. The proposed model evaluates the quality of the watermarked audio and extracted watermark image. The average PSNR of the watermarked audio is found to be 37.01 dB. It has also been seen that the average PSNR, Normal cross-correlation, BER, SSMI (structure similarity index matric) value for the extracted watermark image is found to be 96.30 dB, 0.9042 units, 0.1033 units, and 0.9836 units respectively. Further, the model has been tested using various attacks to check its robustness. After applying attacks such as noising, filtering, cropping, and resampling on the watermarked audio, the watermark image has been extricated and its quality has been checked under the standard parameters. It has been found that the quality of the recovered watermark image satisfying enough to justify the digital ownership of the host audio. Hence, the proposed watermarking model attains a perfect balance between imperceptibility, payload, and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.