Abstract

<span>This paper presents a watermarking scheme for grayscale images, in which lifting wavelet transform and singular value decomposition are exploited based on multi-objective artificial bee colony optimization to produce a robust watermarking method. Furthermore, for increasing security encryption of the watermark is done prior to the embedding operation. In the proposed scheme, the actual image is altered to four sub-band over three levels of lifting wavelet transform then the singular value of the watermark image is embedded to the singular value of LH sub-band of the transformed original image. In the embedding operation, multiple scaling factors are utilized on behalf of the single scaling element to get the maximum probable robustness without changing watermark lucidity. Multi-objective artificial bee colony optimization is utilized for the determination of the optimal values for multiple scaling components, which are examined against various types of attacks. For making the proposed scheme more secure, the watermark is encrypted chaotically by logistic chaotic encryption before embedding it to the host (original) image. The experimental results show excellent imperceptibility and good resiliency against a wide range of image processing attacks.</span>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call