Abstract

In this paper, a new practical robust water level control system for the U-tube steam generator (UTSG) using the quantitative feedback theory (QFT) is proposed. The steam generator is a nonlinear uncertain plant. However, the steam generator behaves as a linear uncertain and nonminimum phase plant at its different operating points, which makes its control a challenging problem. The control problem is to design controllers such that the closed-loop plant satisfies the robust stability, disturbance rejection, and robust tracking specifications that are derived from a desired steam generator performance. In the QFT design methodology, these specifications are satisfied by generating the plant templates, the composite bounds, and a nominal plant loop shaping procedure to satisfy these bounds. Simulation results reveal that the designed QFT water level controllers will ensure all the designers’ closed-loop specifications. Also, comparison results are provided that show the effectiveness of the robust QFT controllers with respect to the previously employed internal model-based controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.