Abstract

We consider the problem of robust inference under the generalized linear model (GLM) with stochastic covariates. We derive the properties of the minimum density power divergence estimator of the parameters in GLM with random design and use this estimator to propose robust Wald-type tests for testing any general composite null hypothesis about the GLM. The asymptotic and robustness properties of the proposed tests are also examined for the GLM with random design. Application of the proposed robust inference procedures to the popular Poisson regression model for analyzing count data is discussed in detail both theoretically and numerically through simulation studies and real data examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.