Abstract

We propose a novel algorithm by extending the multiple kernel learning framework with boosting for an optimal combination of features and kernels, thereby facilitating robust visual tracking in complex scenes effectively and efficiently. While spatial information has been taken into account in conventional multiple kernel learning algorithms, we impose novel affinity constraints to exploit the locality of support vectors from a different view. In contrast to existing methods in the literature, the proposed algorithm is formulated in a probabilistic framework that can be computed efficiently. Numerous experiments on challenging data sets with comparisons to state-of-the-art algorithms demonstrate the merits of the proposed algorithm using multiple kernel boosting and affinity constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.