Abstract
Recent studies on visual tracking have shown significant improvement in accuracy by handling the appearance variations of the target object. Whereas most studies present schemes to extract the time-invariant characteristics of the target and adaptively update the appearance model, the present paper concentrates on modeling the probabilistic dependency between sequential target appearances (Fig. 1-(a)). To actualize this interest, a new Bayesian tracking framework is formulated under the autoregressive Hidden Markov Model (AR-HMM), where the probabilistic dependency between sequential target appearances is implied. During the learning phase at each time step, the proposed tracker separates formerly seen target samples into several clusters based on their visual similarity, and learns cluster-specific classifiers as multiple appearance models, each of which represents a certain type of the target appearance. Then the dependency between these appearance models is learned. During the searching phase, the target state is estimated by inferring the most probable appearance model under the consideration of its dependency on formerly utilized appearance models. The proposed method is tested on 12 challenging video sequences containing targets with abrupt appearance variations, and demonstrates that it outperforms current state-of-the-art methods in accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.