Abstract
This paper presents a novel design of a robust visual tracking control system, which consists of a visual tracking controller and a visual state estimator. This system facilitates human–robot interaction of a unicycle-modeled mobile robot equipped with a tilt camera. Based on a novel dual-Jacobian visual interaction model, a robust visual tracking controller is proposed to track a dynamic moving target. The proposed controller not only possesses some degree of robustness against the system model uncertainties, but also tracks the target without its 3D velocity information. The visual state estimator aims to estimate the optimal system state and target image velocity, which is used by the visual tracking controller. To achieve this, a self-tuning Kalman filter is proposed to estimate interesting parameters and to overcome the temporary occlusion problem. Furthermore, because the proposed method is fully working in the image space, the computational complexity and the sensor/camera modeling errors can be reduced. Experimental results validate the effectiveness of the proposed method, in terms of tracking performance, system convergence, and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.