Abstract
Learning from open-world noisy data, where both closed-set and open-set noise co-exist in the dataset, is a realistic but underexplored setting. Only recently, several efforts have been initialized to tackle this problem. However, these works assume the classes are balanced when dealing with open-world noisy data. This assumption often violates the nature of real-world large-scale datasets, where the label distributions are generally long-tailed, i.e. class-imbalanced. In this paper, we study the problem of robust visual recognition with class-imbalanced open-world noisy data. We propose a probabilistic graphical model-based approach: iMRF to achieve label noise correction that is robust to class imbalance via an efficient iterative inference of a Markov Random Field (MRF) in each training mini-batch. Furthermore, we design an agreement-based thresholding strategy to adaptively collect clean samples from all classes that includes corrected closed-set noisy samples while rejecting open-set noisy samples. We also introduce a noise-aware balanced cross-entropy loss to explicitly eliminate the bias caused by class-imbalanced data. Extensive experiments on several benchmark datasets including synthetic and real-world noisy datasets demonstrate the superior performance robustness of our method over existing methods. Our code is available at https://github.com/Na-Z/LIOND.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.