Abstract
With the emergence of camera technology, visual tracking has witnessed great attention in the field of computer vision. For instance, numerous discriminative correlation filter (DCF) methods are broadly used in tracking, nevertheless, most of them fail to efficiently find the target in challenging situations which leads to tracking failure throughout the sequences. In order to handle these issues, we propose contextual information based spatial variation with a multi-feature fusion method (CSVMF) for robust object tracking. This work incorporates the contextual information of the target to determine the location of the target accurately, which utilizes the relationship between the target and its surroundings to increase the efficiency of the tracker. In addition, we integrate the spatial variation information which measures the second-order difference of the filter to avoid the over-fitting problem caused by the changes in filter coefficient. Furthermore, we adopt multi-feature fusion strategy to enhance the target appearance by using different metrics. The tracking results from different features are fused by employing peak-to-sidelobe ratio (PSR) which measures the peak strength of the response. Finally, we conduct extensive experiments on TC128, DTB70, UAV123@10fps, and UAV123 datasets to demonstrate that the proposed method achieves a favorable performance over the existing ones.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.