Abstract
Home wireless networks are mainly used for data transmission; however, they are now being used in video delivery applications, such as video on demand or wireless internet protocol (IP) television. Off-the-shelf technologies are inappropriate for the delivery of real-time video. In this paper, a packetization method is presented for robust H.264 video transmission over the IEEE 802.11 wireless local area network (WLAN) configured as a wireless home network. To overcome the poor throughput efficiency of the IEEE 802.11 Medium Access Control (MAC), an aggregation scheme with a recovery mechanism is deployed and evaluated via simulation. The scheme maps several IP packets (each containing a single H.264 video packet called a Network Abstraction Layer (NAL) unit) into a single larger MAC frame. Video robustness is enhanced by using small NAL units and by retrieving possible error-free IP packets from the received MAC frame. The required modifications to the legacy MAC are described. Results in terms of throughput efficiency and peak-signal-to-noise ratio (PSNR) are presented for the case of broadcast and real-time transmission applications. Compared to the legacy case, an 80% improvement in throughput efficiency is achieved for a similar PSNR video performance. For fixed physical layer resources, our system provides a 2.5-dB gain in video performance over the legacy case for a similar throughput efficiency. The proposed solution provides considerable robustness enhancement for video transmission over IEEE 802.11-based WLANs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.