Abstract
For a high-performance 6-DOF Active Vibration Isolation System (AVIS), the vibration isolation performance (transmissibility) is the most important criterion and the disturbance rejection performance (compliance) has lower priority. The strategy of combining modal decomposition and frequency-shaped sliding surface control is applied based on the measurement scheme of relative displacement and payload absolute acceleration. Modal decomposition decouples the six modes and calculates the equivalent sensor noises for each mode. The designed performances, transmissibility and sensitivities to the two sensor noises, depend solely on the sliding surface design. The sliding surface is optimized for each mode with predefined constraints which are derived from common industrial requirements. The regulator is designed to realize the designed transmissibility for each mode and to achieve low compliance. The numerical example of the sliding surface optimization gives better result than the manual design. This strategy designs the four performances step by step and iterative design is not necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.