Abstract

Unmanned Aerial Vehicles have been used widely in the commercial and surveillance use in the recent year. Vehicle tracking from aerial video is one of commonly used application. In this paper, a self-learning mechanism has been proposed for the vehicle tracking in real time. The main contribution of this paper is that the proposed system can automatic detect and track multiple vehicles with a self-learning process leading to enhance the tracking and detection accuracy. Two detection methods have been used for the detection. The Features from Accelerated Segment Test (FAST) with Histograms of Oriented Gradient (HoG) method and the HSV colour feature with Grey Level Cooccurrence Matrix (GLCM) method have been proposed for the vehicle detection. A Forward and Backward Tracking (FBT) mechanism has been employed for the vehicle tracking. The main purpose of this research is to increase the vehicle detection accuracy by using the tracking results and the learning process, which can monitor the detection and tracking performance by using their outputs. Videos captured from UAVs have been used to evaluate the performance of the proposed method. According to the results, the proposed learning system can increase the detection performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.