Abstract

Over the last years, physical Human–Robot Interaction (pHRI) has become a particularly interesting topic for industrial tasks. An important issue is allowing people and robots to collaborate in an useful, simple and safe manner. In this work, we propose a new framework that allows the person to collaborate with a robot manipulator, while the robot has its own predefined task. To allow the robot to smoothly switch from its own task to be a compliant collaborator for the person, a variable admittance control is developed. Furthermore, in general the task to accomplish requires the robot to carry variable, unknown, loads at the end-effector. To include this feature in our framework, a robust control is also included to preserve the performance of the robot despite uncertainties coming from the unknown load. To validate our approach, experiments were carried out with a Kuka LBR iiwa 14 R820, first to validate both parts of the controller, and finally, to study a use-case scenario similar to an industrial production line. Results show the efficiency of this approach to allow the person to collaborate at any moment while the robot is capable of performing another task. This flexible framework for object co-manipulation also allows unknown loads up to 2 kg to be handled without making the task more difficult for the person.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.