Abstract
We study a utility maximization problem in a financial market with a stochastic drift process, combining a worst-case approach with filtering techniques. Drift processes are difficult to estimate from asset prices, and at the same time optimal strategies in portfolio optimization problems depend crucially on the drift. We approach this problem by setting up a worst-case optimization problem with a time-dependent uncertainty set for the drift. Investors assume that the worst possible drift process with values in the uncertainty set will occur. This leads to local optimization problems, and the resulting optimal strategy needs to be updated continuously in time. We prove a minimax theorem for the local optimization problems and derive the optimal strategy. Further, we show how an ellipsoidal uncertainty set can be defined based on filtering techniques and demonstrate that investors need to choose a robust strategy to be able to profit from additional information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Theoretical and Applied Finance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.