Abstract

Detecting whistle events is essential when studying the population density and behavior of cetaceans. After eight months of passive acoustic monitoring in Xiamen, we obtained long calls from two Tursiops aduncus individuals. In this paper, we propose an algorithm with an unbiased gammatone multi-channel Savitzky-Golay for smoothing dynamic continuous background noise and interference from long click trains. The algorithm uses the method of least squares to perform a local polynomial regression on the time-frequency representation of multi-frequency resolution call measurements, which can effectively retain the whistle profiles while filtering out noise and interference. We prove that it is better at separating out whistles and has lower computational complexity than other smoothing methods. In order to further extract whistle features in enhanced spectrograms, we also propose a set of multi-scale and multi-directional moving filter banks for various whistle durations and contour shapes. The final binary adaptive decisions at frame level for whistle events are obtained from the histograms of multi-scale and multi-directional spectrograms. Finally, we explore the entire data set and find that the proposed scheme achieves the highest frame-level F1-scores when detecting T. aduncus whistles than the baseline schemes, with an improvement of more than 6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.