Abstract
The problem of establishing out-of-sample bounds for the values of an unknown ground-truth function is considered. Kernels and their associated Hilbert spaces are the main formalism employed herein, along with an observational model where outputs are corrupted by bounded measurement noise. The noise can originate from any compactly supported distribution, and no independent assumptions are made on the available data. In this setting, we show how computing tight, finite-sample uncertainty bounds amounts to solving parametric quadratically constrained linear programs. Next, the properties of our approach are established, and its relationship with another method is studied. Numerical experiments are presented to exemplify how the theory can be applied in various scenarios and to contrast it with other closed-form alternatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.