Abstract

We have proposed an approach for growing robust ultrathin oxynitride using conventional thermal processes with the capability of preventing boron penetration. In this method, we obtain oxynitride with high nitrogen concentration (≈13 at. %) on the top and low interface state density (Dit=2×1010 cm-2 eV-1). The films demonstrate excellent properties in terms of low Dit, low leakage current, high endurance in stressing and superior boron diffusion blocking behavior. This method does not involve any additional capital equipment [such as decoupled plasma nitridation (DPN) or remote plasma nitridation (RPN)] or gas (NO or N2O). In addition, it obtains high-quality oxynitride film with low thermal budget. Most importantly, this process is simple and fully compatible with current process technology. It would be important and interesting for process engineers engaged in the field of gate dielectrics. It is suitable for the next generation of ULSI technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.